Search results

Search for "intermodal coupling" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

Intermodal coupling spectroscopy of mechanical modes in microcantilevers

  • Ioan Ignat,
  • Bernhard Schuster,
  • Jonas Hafner,
  • MinHee Kwon,
  • Daniel Platz and
  • Ulrich Schmid

Beilstein J. Nanotechnol. 2023, 14, 123–132, doi:10.3762/bjnano.14.13

Graphical Abstract
  • . Through such findings we aim to expand the field of multifrequency AFM with innumerable possibilities leading to improved signal-to-noise ratios, all accessible with no additional hardware. Keywords: atomic force microscopy; intermodal coupling; nonlinear mechanics; optomechanics; sideband cooling
  • resonator. As the stress field of one mode stiffens the vibrational motion of another, an energy exchange is established between them. This phenomenon is referred to as intermodal coupling [26]. It allows to replace the optical cavity from optomechanics with a mechanical eigenmode. So far, intermodal
  • surface and the tip of the mechanical resonator. This promotes cantilevers as the chosen geometry for this task, as building a clamped beam or a square membrane at the edge of a chip is considerably more challenging. In the following, we will explore intermodal coupling in a microcantilever as an
PDF
Album
Full Research Paper
Published 19 Jan 2023

Towards a scalable and accurate quantum approach for describing vibrations of molecule–metal interfaces

  • David M. Benoit,
  • Bruno Madebene,
  • Inga Ulusoy,
  • Luis Mancera,
  • Yohann Scribano and
  • Sergey Chulkov

Beilstein J. Nanotechnol. 2011, 2, 427–447, doi:10.3762/bjnano.2.48

Graphical Abstract
  • Vibrational Configuration Interaction: The VSCF/VCI approach The vibrational mean field scheme is well adapted if the intermodal coupling potential is very weak. However, in most cases this condition is not fulfilled and the results of the SCF approach need correcting for mode–mode interactions. There are
  • orders has been carefully examined by Christiansen [24]). However, this approach is explicitly pertubative and thus assumes that the intermodal coupling is weak. This limitation has motivated the development of other methods. In our computer code PVSCF, we have mainly implemented the VMP2 (perturbative
  • intermodal coupling is computed. Applications The methods presented above allow us to treat large molecular systems and have been used to compute the OH-stretch frequency of benzoic acid (system with 39 modes) [40], for example. Our method can also be applied to larger systems and the STA approach was used
PDF
Album
Full Research Paper
Published 10 Aug 2011
Other Beilstein-Institut Open Science Activities